Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inspired by recent work on learning with distribution shift, we give a general outlier removal algorithm called iterative polynomial filtering and show a number of striking applications for supervised learning with contamination: (1) We show that any function class that can be approximated by low-degree polynomials with respect to a hypercontractive distribution can be efficiently learned under bounded contamination (also known as nasty noise). This is a surprising resolution to a longstanding gap between the complexity of agnostic learning and learning with contamination, as it was widely believed that low-degree approximators only implied tolerance to label noise. (2) For any function class that admits the (stronger) notion of sandwiching approximators, we obtain near-optimal learning guarantees even with respect to heavy additive contamination, where far more than 1/2 of the training set may be added adversarially. Prior related work held only for regression and in a list-decodable setting. (3) We obtain the first efficient algorithms for tolerant testable learning of functions of halfspaces with respect to any fixed log-concave distribution. Even the non-tolerant case for a single halfspace in this setting had remained open. These results significantly advance our understanding of efficient supervised learning under contamination, a setting that has been much less studied than its unsupervised counterpart.more » « lessFree, publicly-accessible full text available May 26, 2026
-
Estimating the geometric median of a dataset is a robust counterpart to mean estimation, and is a fundamental problem in computational geometry. Recently, [HSU24] gave an (ε,δ)-differentially private algorithm obtaining an α-multiplicative approximation to the geometric median objective, 1n∑i∈[n]‖⋅−xi‖, given a dataset :={xi}i∈[n]⊂ℝd. Their algorithm requires n≳d‾‾√⋅1αε samples, which they prove is information-theoretically optimal. This result is surprising because its error scales with the \emph{effective radius} of (i.e., of a ball capturing most points), rather than the worst-case radius. We give an improved algorithm that obtains the same approximation quality, also using n≳d‾‾√⋅1αϵ samples, but in time O˜(nd+dα2). Our runtime is nearly-linear, plus the cost of the cheapest non-private first-order method due to [CLM+16]. To achieve our results, we use subsampling and geometric aggregation tools inspired by FriendlyCore [TCK+22] to speed up the "warm start" component of the [HSU24] algorithm, combined with a careful custom analysis of DP-SGD's sensitivity for the geometric median objective.more » « lessFree, publicly-accessible full text available May 26, 2026
-
Placing a dataset A={ai}i∈[n]⊂ℝd in radial isotropic position, i.e., finding an invertible R∈ℝd×d such that the unit vectors {(Rai)‖Rai‖−12}i∈[n] are in isotropic position, is a powerful tool with applications in functional analysis, communication complexity, coding theory, and the design of learning algorithms. When the transformed dataset has a second moment matrix within a exp(±ϵ) factor of a multiple of Id, we call R an ϵ-approximate Forster transform. We give a faster algorithm for computing approximate Forster transforms, based on optimizing an objective defined by Barthe [Barthe98]. When the transform has a polynomially-bounded aspect ratio, our algorithm uses O(ndω−1(nϵ)o(1)) time to output an ϵ-approximate Forster transform with high probability, when one exists. This is almost the natural limit of this approach, as even evaluating Barthe's objective takes O(ndω−1) time. Previously, the state-of-the-art runtime in this regime was based on cutting-plane methods, and scaled at least as ≈n3+n2dω−1. We also provide explicit estimates on the aspect ratio in the smoothed analysis setting, and show that our algorithm similarly improves upon those in the literature. To obtain our results, we develop a subroutine of potential broader interest: a reduction from almost-linear time sparsification of graph Laplacians to the ability to support almost-linear time matrix-vector products. We combine this tool with new stability bounds on Barthe's objective to implicitly implement a box-constrained Newton's method [CMTV17, ALOW17].more » « lessFree, publicly-accessible full text available April 8, 2026
-
Posterior sampling with the spike-and-slab prior [MB88], a popular multimodal distribution used to model uncertainty in variable selection, is considered the theoretical gold standard method for Bayesian sparse linear regression [CPS09, Roc18]. However, designing provable algorithms for performing this sampling task is notoriously challenging. Existing posterior samplers for Bayesian sparse variable selection tasks either require strong assumptions about the signal-to-noise ratio (SNR) [YWJ16], only work when the measurement count grows at least linearly in the dimension [MW24], or rely on heuristic approximations to the posterior. We give the first provable algorithms for spike-and-slab posterior sampling that apply for any SNR, and use a measurement count sublinear in the problem dimension. Concretely, assume we are given a measurement matrix X∈ℝn×d and noisy observations y=Xθ⋆+ξ of a signal θ⋆ drawn from a spike-and-slab prior π with a Gaussian diffuse density and expected sparsity k, where ξ∼(𝟘n,σ2In). We give a polynomial-time high-accuracy sampler for the posterior π(⋅∣X,y), for any SNR σ−1 > 0, as long as n≥k3⋅polylog(d) and X is drawn from a matrix ensemble satisfying the restricted isometry property. We further give a sampler that runs in near-linear time ≈nd in the same setting, as long as n≥k5⋅polylog(d). To demonstrate the flexibility of our framework, we extend our result to spike-and-slab posterior sampling with Laplace diffuse densities, achieving similar guarantees when σ=O(1k) is bounded.more » « lessFree, publicly-accessible full text available March 4, 2026
-
To recognize and mitigate the harms of generative AI systems, it is crucial to consider who is represented in the outputs of generative AI systems and how people are represented. A critical gap emerges when naively improving who is represented, as this does not imply bias mitigation efforts have been applied to address how people are represented. We critically examined this by investigating gender representation in occupation across state-of-the-art large language models. We first show evidence suggesting that over time there have been interventions to models altering the resulting gender distribution, and we find that women are more represented than men when models are prompted to generate biographies or personas. We then demonstrate that representational biases persist in how different genders are represented by examining statistically significant word differences across genders. This results in a proliferation of representational harms, stereotypes, and neoliberalism ideals that, despite existing interventions to increase female representation, reinforce existing systems of oppression.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Recent work on supervised learning [GKR+22] defined the notion of omnipredictors, i.e., predictor functions p over features that are simultaneously competitive for minimizing a family of loss functions against a comparator class . Omniprediction requires approximating the Bayes-optimal predictor beyond the loss minimization paradigm, and has generated significant interest in the learning theory community. However, even for basic settings such as agnostically learning single-index models (SIMs), existing omnipredictor constructions require impractically-large sample complexities and runtimes, and output complex, highly-improper hypotheses. Our main contribution is a new, simple construction of omnipredictors for SIMs. We give a learner outputting an omnipredictor that is ε-competitive on any matching loss induced by a monotone, Lipschitz link function, when the comparator class is bounded linear predictors. Our algorithm requires ≈ε−4 samples and runs in nearly-linear time, and its sample complexity improves to ≈ε−2 if link functions are bi-Lipschitz. This significantly improves upon the only prior known construction, due to [HJKRR18, GHK+23], which used ≳ε−10 samples. We achieve our construction via a new, sharp analysis of the classical Isotron algorithm [KS09, KKKS11] in the challenging agnostic learning setting, of potential independent interest. Previously, Isotron was known to properly learn SIMs in the realizable setting, as well as constant-factor competitive hypotheses under the squared loss [ZWDD24]. As they are based on Isotron, our omnipredictors are multi-index models with ≈ε−2 prediction heads, bringing us closer to the tantalizing goal of proper omniprediction for general loss families and comparators.more » « lessFree, publicly-accessible full text available January 22, 2026
-
We study the problem of differentially private stochastic convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a kth-moment bound on the Lipschitz constants of sample functions rather than a uniform bound. We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error G2⋅1n√+Gk⋅(d√nϵ)1−1k under (ϵ,δ)-approximate differential privacy, up to a mild $$\textup{polylog}(\frac{1}{\delta})$$ factor, where G22 and Gkk are the 2nd and kth moment bounds on sample Lipschitz constants, nearly-matching a lower bound of [Lowy and Razaviyayn 2023]. We further give a suite of private algorithms in the heavy-tailed setting which improve upon our basic result under additional assumptions, including an optimal algorithm under a known-Lipschitz constant assumption, a near-linear time algorithm for smooth functions, and an optimal linear time algorithm for smooth generalized linear models.more » « less
-
In the recent literature on machine learning and decision making, calibration has emerged as a desirable and widely-studied statistical property of the outputs of binary prediction models. However, the algorithmic aspects of measuring model calibration have remained relatively less well-explored. Motivated by [BGHN23], which proposed a rigorous framework for measuring distances to calibration, we initiate the algorithmic study of calibration through the lens of property testing. We define the problem of calibration testing from samples where given n draws from a distribution on (predictions,binaryoutcomes), our goal is to distinguish between the case where is perfectly calibrated, and the case where is ε-far from calibration. We make the simple observation that the empirical smooth calibration linear program can be reformulated as an instance of minimum-cost flow on a highly-structured graph, and design an exact dynamic programming-based solver for it which runs in time O(nlog2(n)), and solves the calibration testing problem information-theoretically optimally in the same time. This improves upon state-of-the-art black-box linear program solvers requiring Ω(nω) time, where ω>2 is the exponent of matrix multiplication. We also develop algorithms for tolerant variants of our testing problem improving upon black-box linear program solvers, and give sample complexity lower bounds for alternative calibration measures to the one considered in this work. Finally, we present experiments showing the testing problem we define faithfully captures standard notions of calibration, and that our algorithms scale efficiently to accommodate large sample sizes.more » « less
-
The k-principal component analysis (k-PCA) problem is a fundamental algorithmic primitive that is widely-used in data analysis and dimensionality reduction applications. In statistical settings, the goal of k-PCA is to identify a top eigenspace of the covariance matrix of a distribution, which we only have black-box access to via samples. Motivated by these settings, we analyze black-box deflation methods as a framework for designing k-PCA algorithms, where we model access to the unknown target matrix via a black-box 1-PCA oracle which returns an approximate top eigenvector, under two popular notions of approximation. Despite being arguably the most natural reduction-based approach to k-PCA algorithm design, such black-box methods, which recursively call a 1-PCA oracle k times, were previously poorly-understood. Our main contribution is significantly sharper bounds on the approximation parameter degradation of deflation methods for k-PCA. For a quadratic form notion of approximation we term ePCA (energy PCA), we show deflation methods suffer no parameter loss. For an alternative well-studied approximation notion we term cPCA (correlation PCA), we tightly characterize the parameter regimes where deflation methods are feasible. Moreover, we show that in all feasible regimes, k-cPCA deflation algorithms suffer no asymptotic parameter loss for any constant k. We apply our framework to obtain state-of-the-art k-PCA algorithms robust to dataset contamination, improving prior work in sample complexity by a 𝗉𝗈𝗅𝗒(k) factor.more » « less
An official website of the United States government

Full Text Available